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Abstract. The static local-field mrrectionc satisfying the compressibility. f -. and third moment 
sum rules exactly have been obtained for rlueedimensional eleclmn liquids. Our results also 
satisfy the non-negativity condition of the pair correlation function at origin. because they 
reproduce the static svuctw factors or the pair correlations obtained by the Fermi hypemened 
chain method. An appropriate dynamic local-field mrrection has been introduced to satisfy the 
third moment sum rule exactly. We check the moment sum rules numerically for 4 = 1.54~.  
for example. 

1. Introduction 

The local-field correction G(q)  is the most important quantity in studying the static 
properties of electron liquids, it has been studied by many authors [ I ,  21. However, a 
G(q) which satisfies all the physical requirements including sum rules has not been found 
yet The compressibility sum rule may be satisfied more easily than the frequency moment 
sum rules, except for the f -sum rule. One understands that the higher order frequency 
moment sum rules are satisfied when an appropriate dynamic local-field correction is given. 
The dynamic local-field correction may be defined in two different forms. One of them is 
derived as follows: the induced density fluctuation is written as [31 

(1) 

where &(o) is the Fourier component of the induced density fluctuation and u(q) the 
Fourier transform of the Coulomb interaction. Niklasson [3] has shown that i 0 ( 9 ,  w )  is the 
modified Lindhard function, in which the Fermi distribution function is the exact one for 
the interacting system. Since the response function is defined by 

(2) 

the dynamic local-field correction e(9, w )  can be defined in terms of the response function 
by combining equations ( I )  and (2). It is 

i jq (W)  = i 0 ( 9 , w ) ( 0 e % , o ) +  u ( q ) U -  e(9.w)1Pq(w)) 

P g W  = x(q .  w)OeU(q. 0) 

i O ( q , w )  

1 - u(q)[ l  - ~ ( 4 . w ) l i o ( s ~ o )  
x ( 9 . 0 )  = 

Equation (3) may be regarded as a definition of the dynamic local-field correction. 
One may write the other definition. which is often used, as 

(3) 
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where x0(q, o) is the true non-interacting density response function (the Lindhard function). 
The superscript 0 means non-interacting in what follows. The definition (4) is usually taken 
for practical calculations because the Fermi distribution of the non-interacting system at 
T = 0 is simple and the latter fact makes calculations easy. 

It is meaningful to discriminate G(q,o)  from e(q.0) and obtain the former instead 
of the latter to use the definition (4) in studying the dynamic properties of many-electron 
systems. Since OUT purpose in this work is to obtain the static local-field correction G(q) 
of equation (4). we only consider the static part of the dynamic local-field correction. 
A generally known behaviour of the static local-field correction C(q) is that it increases 
quadratically at small q and approaches a constant as q approaches infinity. There may 
be a hump around q = 2 q ~ ,  qF being the Fermi wave vector. The quadratically increasing 
behaviour at small q is guaranteed by the compressibility sum rule. On the other hand, the 
large-q limit, C(m) = :[I - g(O)l, g(0) being the pair correlation function at origin, has 
been given by Niklasson I31 and Vignale [4]. 

The explicit difference between the two local-field corrections can be obtained by 
equating equations (3) and (4). One may write the difference as 
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The right-hand side of equation (5) is propodonal to q4 for small q. Thus d(q) and 
G(9) have the same quadratic behaviour at small q. which may be constrained by the 
compressibility sum rule. However, a remarkable difference between G(q) and G(q)  
appears in the large-q regime. The large-q behaviour of G(q)  has been studied by Holas 
151, and also by Lee and Hong [6]. They showed that G(q) increases quadratically as q 
approaches infinity. The large-q expansion of equation (5) is 

(6) 

where a = ( 4 / 9 ~ ) ' / ~ ,  S ( K )  = (Q) - (ep)O, S(K2) = (6;) - (6;)' and 6 ( K ) *  = 
(E# - ((E~)O)~, r, is the average distance between electrons measured in units of Bohr 
radius. Here the angle brackets mean the average and ek is the kinetic energy per particle. 
Holas [5] has produced the same expansion as equation (6). As far as we know, there is no 
report on the study of the difference between c ( q )  and G(q). The purpose of this paper is 
to obtain the static part G(q) of equation (4)  instead of C(q)  of equation (3) .  

Since finding an exact G(q, o) is a very difficult problem, there have been many attempts 
via the static approximation for G ( q ,  U ) ,  such as 

377 
1 6 ~ ~ ~  

G(q) = ;U - R(O)I+ - ( $ S ( K ) q 2 +  $S(fP) - 'bS 9 ( K ) )+O(q-Z) 

in studying the dynamic and the static properties of the electron liquids. Many forms of 
G(q) have been presented in terms of equation (7) [ I ,  2, 71. But it should be emphasized 
that only the first frequency moment sum rule (f-sum rule) is satisfied when equation (7) 
is used as a density response function. 

There are two important points which must be checked for the G(q) obtained by 
a particular theory. One is to check the sum rules and the other is the non-negativity 
condition for the pair-correlation function g(r )  at origin. No existing G(q)s satisfy these 
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requirements simultaneously to our knowledge. Iwamoto, Krotscheck and Pines (KP) [7] 
and Neilson, Swierkowski, Sjolander and Szymahski (NSSS) [SI have obtained G(q) in 
terms of equation (7)  for three and two dimensions, respectively. Their results satisfy 
the f-sum rule, the compressibility sum rule and the condition g(0) 2 0 for any density 
simultaneously, but do not satisfy the third moment sum rule. The condition g(0) > 0 has 
been guaranteed by using the numerical data of the structure factor in their method. The 
compressibility sum rule can be satisfied by using a constraint 11.91 which is expressed by 
the correlation energy whose precise values may be given by the Monte Carlo calculation 
[IO]. However, to satisfy the third moment sum rule one needs an appropriate dynamic 
local-field correction. Of course, there are higher order frequency moments in principle. 
But the exact fifth and higher moments have not been obtained for the quantum system. 
Therefore, the third moment is the highest available moment one can use to check the 
frequency moment sum rule for the time being. 

This paper is comprised as follows. We briefly introduce formal theory to obtain the 
dynamic local-field correction satisfying the third moment sum rule, and explain the method 
of this work in 52. In 53, we show OUT results for the static local-field corrections and make 
a comparison with others. We also give some discussions in this section. 

2. Methods 

Our object, in this work, is to find G(q) satisfying the condition g(0) > 0, and satisfying 
the compressibility, f-, and third moment sum rules simultaneously. As we mentioned 
earlier, the first two may be satisfied through the method of IKP or NSSS by using the 
numerical data for the structure factor. But to satisfy the third moment sum rule, one needs 
an appropriate form of G(q, 0). Some years ago, Hong and Lee [I I ]  presented a systematic 
approximation method to obtain the density response function satisfying the higher order 
moment sum rules exactly as the order of the approximation increases. The formalism has 
been reviewed recently by Hong and Kim [ 121 and has also appeared in other papers [6, 
131. Therefore, we do not need to repeat it here. 

However, we show briefly how a G(q, w)  satisfying the third moment sum rule exactly 
is constructed. A numerical test is also given later in this work. The density response 
function (4). may be related to the relaxation function E@) by [I41 

(8 )  x ( 4 .  z ) / x ( d  = 1 - z~(z)lr=-b+w 
where E(z) is represented by a continued fraction [151: 

1 
E(2) = (9) 

Zf 

In equation (9). A I  = (P,,, Pq)/(pq, pq) and A2 = (4, &/(& p,) - A,. The continued 
fraction can be expanded 1161 as 

(10) E(z) 

where the inner product written above is the Kubo scalar product [17], and (p,,p,) = 
-x(q).  One can identify each frequency moment as 

- 1 - - AI + A I ( A I + A z )  - A I [ ( A I + A z ) ~ + A ~ A ~ I + . . ,  
z 23 25 2’ 
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and so on by substituting equation (IO) into equation (8). 
2 in equation (9) or (IO); then the response function 

(8) satisfies the f-sum rule exactly and the higher moment sum rules approximately. We 
call this the first-order approximation in this paper. In a similar way, if we replace A, by 
At for U > 3, the response function satisfies the f- and the third moment sum rules exactly 
and the rest approximately. This is called the second-order approximation. According to 
this method, the dynamic local-field corrections corresponding to each approximation are 
as follows: 

Jongbae Hong and Yunsic Shim 

Let us replace A, by A! for LI 

where q2 = A2/A: - 1 and Q(q,  w )  = xo(q)/XO(q, U )  + w2/AT - 1. On the other hand, 
it is well known that for electron liquids the first and the third moments [I81 are given by 

where w i  = 4xne2/m and 

where N is the number of particles. We set ft = 1 in this work. This expression can be 
transformed to an integral form [IZ]. By using equations (11). (12), (IS), (16). and the 
definition of q2,  we obtain the following relation for q2(4): 

It is important to note that, since 12 # 0, equation (18) is just a corrected version of 
equation (3.10) in IKP [7]. We will present the form of qz(q) later in this paper. 

Now we are in a situation to perform our object of finding the static part G(q)  given 
in equation (14). To do this, we separate the structure factor into two parts, i.e. one given 
by the continuum excitations which range from UJ = 0 to w = (2q + q2)/2m and the other 
given by the plasmon excitation at w = 0 4 4 ) .  The formula is well known 1191 and is 

where the dielectric function 
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and op(q) is the plasmon energy at wave vector q. In equation (19). we express o and q 
in units of Fermi energy and Fermi momentum, respectively. G(q) is included in &(q, o) 
through equations (14) and (20). 

In equation (19). all quantities are known except S(q), (Q) in q 2  and G(q). Therefore, 
once the first two are given, G(q) may be obtained. We use numerical data for S(q) 
provided by Krotscheck [ZO] and for ( ~ k )  by Monte Carlo calculation [IO] to find G(q) 
via equation (19). The structure factors given by Krotscheck are shown in figure 1 for 
several densities. The function I fq) ,  equation (17), has also been drawn in figure 2 by 
using the structures of figure 1. Very accurate numerical calculations have been performed 
in differentiation, integration and finding zeros of ~ ( 9 ,  w). Our G(q) gives rise to the S(q) 
of the left-hand side of equation (19). as given by Krotscheck. Therefore, our G(q) yields 
non-negative g(r ) .  

Figure 1. The smcture faclom obtained by Krolscheck Figure 2. The forms of I ( q )  obtained by using the data 
[ZO] using lhe Fenni hypernetted cham method of figure 1. 

We meet some difficulties for small q (q c 0 . 5 q ~ )  because the numerical data for 
S(q)  do not satisfy the compressibility sum rule. This difficulty is remedied by using the 
constraint [ 1, 91 imposed by the compressibility sum rule which gives the correct quadratic 
line of G(q) for small q. The smooth connection between the quadratically increasing line 
starting from q = 0 and the line obtained by equation (19) is achieved by using q2(q). The 
method used by NSSS for two dimensions is the same as ours when q 2  = 0. 

3. Results and discussion 

We obtain q2(q) in the course of finding G(q) from equation (19). This function is crucial 
in both the smooth connection of G(9) and to satisfy the third moment. We plot q2(9) 
in figure 3 for r, = 2, 5 and IO. Here we discuss q2 a little more. An exact analytic 
study of r72 has been given by Hong et ul I131 for a classical one-component plasma in two 
dimensions at r = 2, r = e* f (ks T). The latter is the only case where the structure factor 
is known analytically [21]. In addition, for the classical one-component plasma G(q) is 
simply related to the structure factor and ( ~ t )  = (ck)'. The form of the exact q2 is quite 
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Fwre 3. 1)2(9) for r,, = 2, 5 and IO. Figure 4. C(q) of equation (14) for r, = 1. 2, 5 and 
10. 

similar to those plotted in figure 3. In figure 4, we plot our second-order (equation (14)) 
results for the same densities as in figure 1. 

A remarkable change with density is seen for q > 2, where G(q) increases rapidly 
as density decreases. In figure 5 ,  we finally plot our first- and second-order results and 
also those given by Utsumi and Ichimaru (VI) [22] for comparison. Our first-order result is 
practically the same as that of IKP [7], because our method is similar to theirs even though 
their results are obtained by using a self-consistent iteration. It is also interesting to note 
that the G(q) of UI is very close to our first-order result. This fact suggests that VI'S results 
are quite good as a static approximation. 

We check the third moment sum rule for the densities of figure 1 by comparing 
equation (16) with 

(21) 

In table I ,  we show the results of checking the third moment sum rule at q = 1.5q~. for 
instance. One can see that only the second-order result satisfies the third moment sum 
rule exactly. As density decreases, the response function using the static approximation 
for G(q. o) satisfies the third moment sum rule worse and worse. This is expected, since 
the region of validity of the static approximation (13) is a high-density regime, as for the 
random phase approximation. We have also checked the f m m  rule. It is satisfied exactly 
for all cases. 

We now make some final remarks on our results. Since the numerical data [201 for 
S(q)  are restricted up to q = 2.5, one cannot see the quadratically increasing behaviour at 
large q mentioned above. However, it may be seen from this analysis if Kimball's large-q 
behaviour for S(q) is used for very large q [23]. An interesting fact for our result is that the 
values of G ( 9 )  in figure 4 are usually larger than other results [ I .  2, 71. The values around 

1 -  

= -m 
( 0 3 )  = --j. 0 3 h x ( q , 0 ) d w .  
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I G(q) (a) G ( q )  

rs= 5 
( I )  ' 

rs= 10 

Fwre 5. The local-field correciions of Eqs. (13) (chain curve) and (14) (full c w e )  for r, = 5 
and IO. The dotted curves are lhe cases of U1 1221. 

Table I. Values of the third moment: (w3) obtained from equation (16) and the fmt&der, U1 

and second-order results from equation (21) at q = 1.59~. respectively. ... . "  
r, (w3, First order , % UI % Second order % 

1 25.4889 24.1451 94.13 24.%2004 94.95 25.4887 100.00 
2 21.5537 24.1058 89.66 24.1118 89.90 27.5534 100.00 
5 33.8617 26.2345 11.48 26.2315 11.41 33.8606 100.00 
IO 43.1609 28.4945 65.11 28.20'19 64.46 43.1598 100.00 

peak are larger than unity even for high density (rs = 1). and the peak becomes more of a 
shoulder as density is lowered. This reflects the fact that G(q)  must be distinguished from 
E(q) .  Ii may also be interesting to compare our results with results obtained by Holas et 
01 [24] and Brosens et a1 [25], whose G ( q )  are the static parts of their G ( q ,  U),  as ours 
are. As far as we know, the latter results do not satisfy the requirements mentioned above 
simultaneously. 
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